Module 4: Unit Review
Learning Objectives
- Review and reinforce key concepts from all modules in this sprint
- Threading Concepts: Understanding concurrency, thread management, and synchronization in Java applications
- Metrics Monitoring: Implementing and utilizing AWS CloudWatch metrics to monitor application performance
- Functional Programming: Using lambda expressions for cleaner, more concise code in Java applications
- Integration: Combining these concepts to build robust, performant Java applications
Sprint Summary
This module provides a comprehensive review of all concepts covered in this sprint, preparing you for the sprint challenge. We'll revisit key topics and ensure you have a solid understanding of the material.
- Introduction to Threads (Module 1)
- AWS CloudWatch Metrics (Module 2)
- Java Lambda Expressions (Module 3)
- Integration of these concepts in real-world applications
Learning Objectives Review
- Threading Concepts:
- Create and manage Java threads using both Thread subclasses and Runnable implementations
- Understand thread lifecycle states (NEW, RUNNABLE, BLOCKED, WAITING, TERMINATED)
- Implement thread synchronization to prevent race conditions
- Determine when concurrency is appropriate for performance improvements
- CloudWatch Metrics:
- Describe CloudWatch concepts: namespace, metric, dimension, statistics, period, alarm
- Design and implement custom metrics for specific business requirements
- Select appropriate statistics and aggregation periods for different scenarios
- Work with percentile-based metrics (p50, p90, p99) for performance analysis
- Lambda Expressions:
- Implement functional interfaces with lambda expressions
- Use built-in interfaces: Function, Consumer, Supplier, and Predicate
- Apply method references as alternatives to lambda expressions
- Process collections using the Stream API with lambda expressions
Key Takeaways
- Threading Concepts: Understanding concurrency, thread management, and synchronization in Java applications
- Metrics Monitoring: Implementing and utilizing AWS CloudWatch metrics to monitor application performance
- Functional Programming: Using lambda expressions for cleaner, more concise code in Java applications
- Integration: Combining these concepts to build robust, performant Java applications
Practical Examples Review
Thread Implementation Example
// Creating a thread using Runnable
public class TaskExecutor {
public static void main(String[] args) {
// Create multiple threads for concurrent execution
Thread downloadThread = new Thread(new DownloadTask(), "DownloadThread");
Thread processingThread = new Thread(new ProcessingTask(), "ProcessingThread");
// Start threads
downloadThread.start();
processingThread.start();
// Join threads to wait for completion
try {
downloadThread.join();
processingThread.join();
} catch (InterruptedException e) {
System.err.println("Thread interrupted: " + e.getMessage());
}
System.out.println("All tasks completed");
}
}
class DownloadTask implements Runnable {
@Override
public void run() {
// Thread-safe code with proper synchronization
synchronized(this) {
System.out.println("Downloading data in " + Thread.currentThread().getName());
// Simulate work
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
}
}
}
CloudWatch Metrics Example
// Publishing metrics to CloudWatch
private void publishMetrics(String metricName, double value) {
try {
// Create CloudWatch client
AmazonCloudWatch cloudWatch = AmazonCloudWatchClientBuilder.standard()
.withRegion(Regions.US_EAST_1)
.build();
// Define metric with dimensions
MetricDatum datum = new MetricDatum()
.withMetricName(metricName)
.withUnit(StandardUnit.Count)
.withValue(value)
.withDimensions(
new Dimension()
.withName("ServiceName")
.withValue("UserService"),
new Dimension()
.withName("Environment")
.withValue("Production")
);
// Create and submit request
PutMetricDataRequest request = new PutMetricDataRequest()
.withNamespace("MyApplication")
.withMetricData(datum);
cloudWatch.putMetricData(request);
logger.info("Published metric: " + metricName + " with value: " + value);
} catch (Exception e) {
logger.error("Failed to publish CloudWatch metric", e);
}
}
Lambda Expressions Example
// Processing data with Stream API and lambda expressions
public class DataProcessor {
public List<UserDTO> processUsers(List<User> users) {
return users.stream()
// Filter active users using Predicate
.filter(user -> user.isActive() && user.getLastLogin().isAfter(LocalDate.now().minusDays(30)))
// Transform User to UserDTO using Function
.map(user -> {
UserDTO dto = new UserDTO();
dto.setId(user.getId());
dto.setDisplayName(user.getFirstName() + " " + user.getLastName());
dto.setLastLoginDays(ChronoUnit.DAYS.between(user.getLastLogin(), LocalDate.now()));
return dto;
})
// Sort by last login using Comparator and method reference
.sorted(Comparator.comparing(UserDTO::getLastLoginDays))
// Limit to top 10 most recent
.limit(10)
// Collect results
.collect(Collectors.toList());
}
// Using various functional interfaces
public void demonstrateFunctionalInterfaces() {
// Supplier - provides a value
Supplier<LocalDate> dateSupplier = LocalDate::now;
// Consumer - accepts a value
Consumer<String> logger = message -> System.out.println("[LOG]: " + message);
// Function - transforms input to output
Function<String, Integer> wordCounter = s -> s.split("\\s+").length;
// Predicate - tests a condition
Predicate<Integer> isEven = num -> num % 2 == 0;
}
}
Guided Project
Sprint Challenge Preparation
To prepare for the sprint challenge, review the following:
- Review all module content and code-alongs
- Practice implementing threads in your own applications
- Experiment with CloudWatch metrics and alarms
- Write code using lambda expressions and functional interfaces
- Complete any outstanding practice exercises